Initial geometry fluctuations and Triangular flow

Burak Alver

RHIC / AGS Users' Meeting

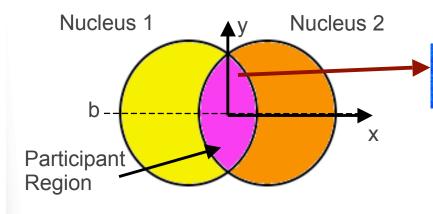
June 7 2010

BA, G.Roland, PRC81, 054905 (2010)

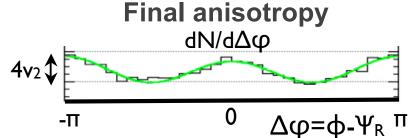
Traditional picture

Initial anisotropy

Pressure driven expansion



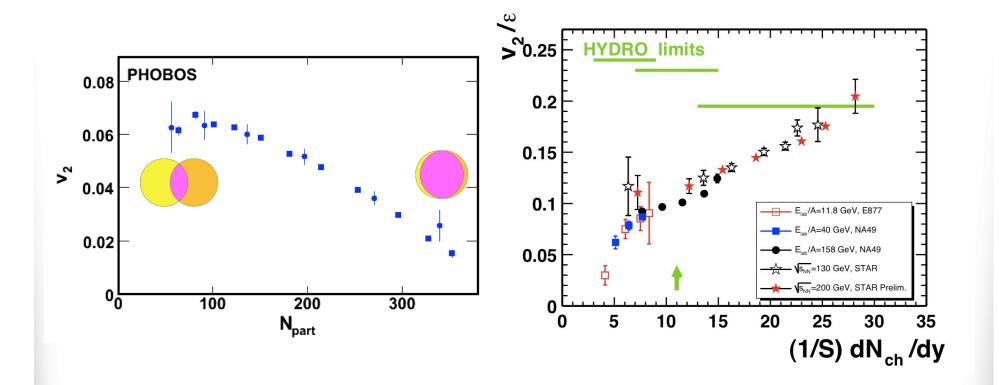
$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_R)) \right)$$



$$v_2 = \langle \cos(2(\phi - \psi_R)) \rangle \propto \varepsilon$$

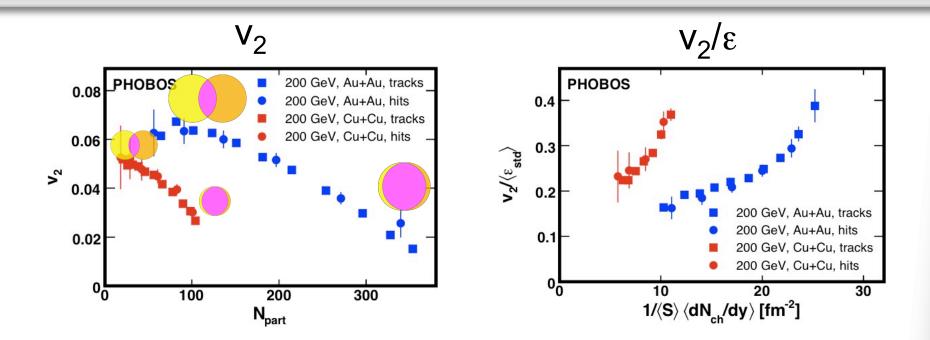
Elliptic flow is quantified by the second Fourier coefficient (v₂) of the observed particle distribution

"The Perfect Liquid at RHIC"



Large elliptic flow signal at RHIC suggests early thermalization and strongly interacting medium

Elliptic flow in Cu+Cu collisions

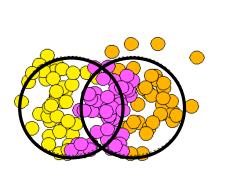


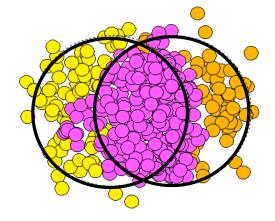
Elliptic flow signal in Cu+Cu collisions was observed to be surprisingly large, in particular for the most central collisions

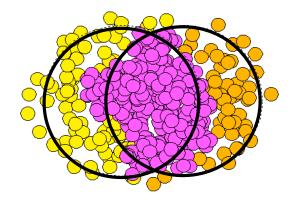
Initial geometry

Glauber Model Description of the initial geometry:

- Nuclei consist of randomly positioned nucleons
- Impact parameter is randomly selected
- Nucleons collide if closer than $D = \sqrt{\sigma_{NN}/\pi}$

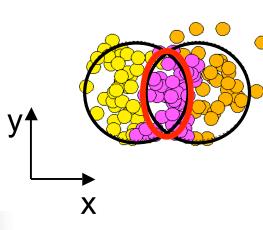




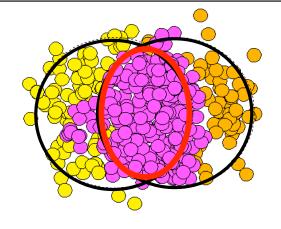


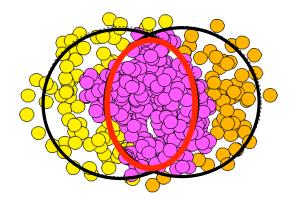
"Standard" eccentricity

Eccentricity of the collision region can be calculated from positions of nucleons



$$\varepsilon_{\text{RP}} = \frac{\left\langle y^2 \right\rangle - \left\langle x^2 \right\rangle}{\left\langle y^2 \right\rangle + \left\langle x^2 \right\rangle}$$

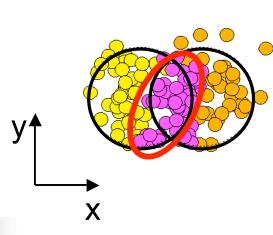




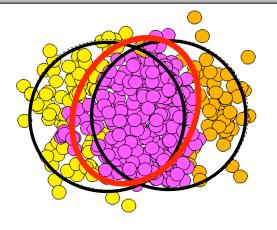
Underlying assumption: Event-by-event fluctuations in Glauber model are not physical

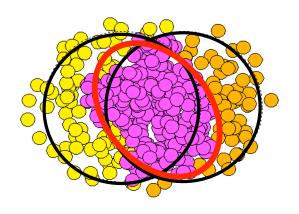
"Participant" eccentricity

Eccentricity of the collision region can be calculated from positions of nucleons



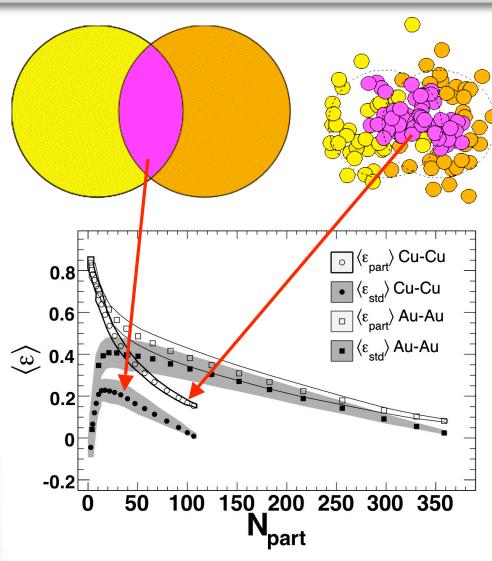
$$\varepsilon_{\text{part}} = \frac{\sqrt{\left(\sigma_y^2 - \sigma_x^2\right)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}$$





Participant eccentricity is calculated with no reference to the impact parameter vector

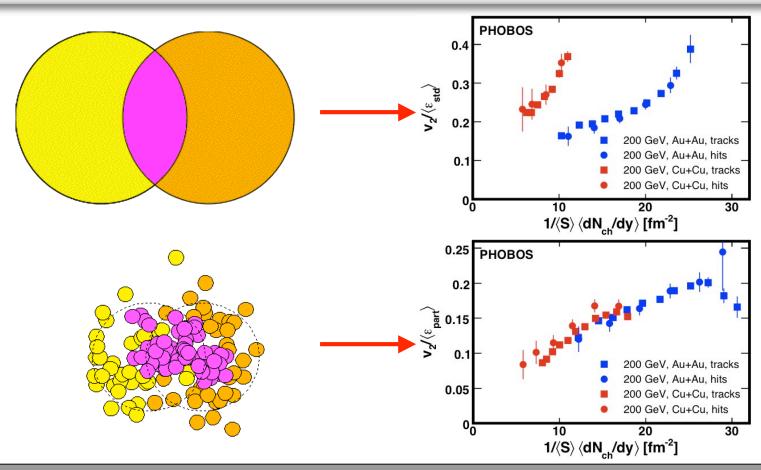
Two different pictures



Participant eccentricity is finite even for most central collisions.

A greater impact on the smaller Cu+Cu system

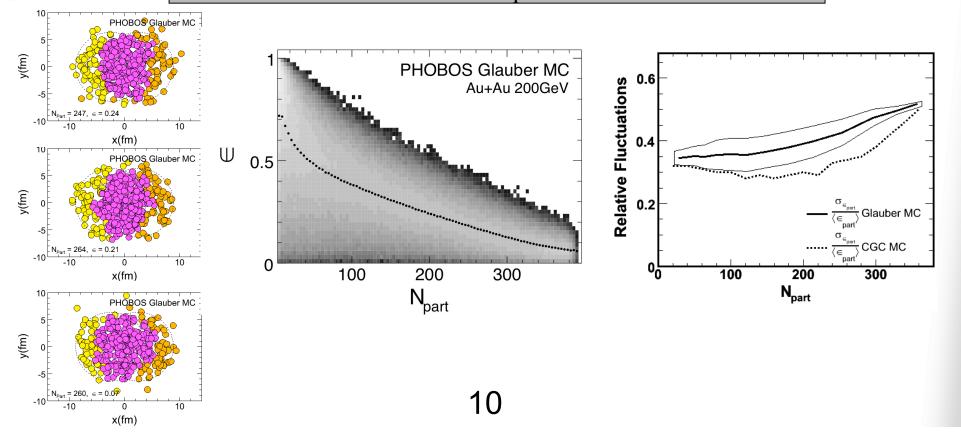
Two different pictures



Participant eccentricity reconciles elliptic flow for Cu+Cu and Au+Au collisions

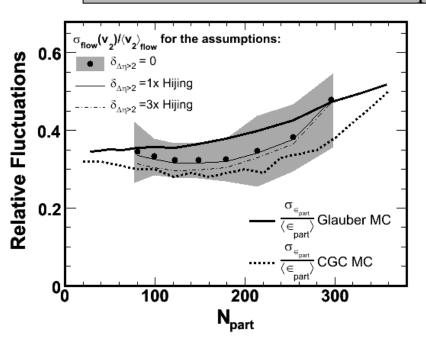
Elliptic flow fluctuations

If initial geometry fluctuations are present v_2 should fluctuate event-by-event at fixed N_{part} or b



Elliptic flow fluctuations

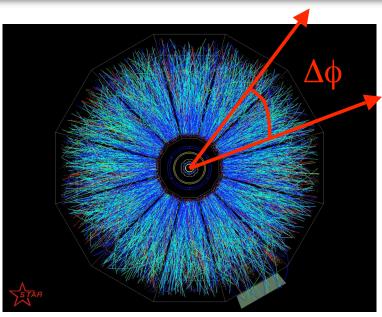
As predicted v_2 fluctuates event-by-event at fixed N_{part}

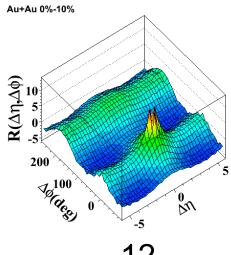


Statistical fluctuations and non-flow correlations are taken out in these results.

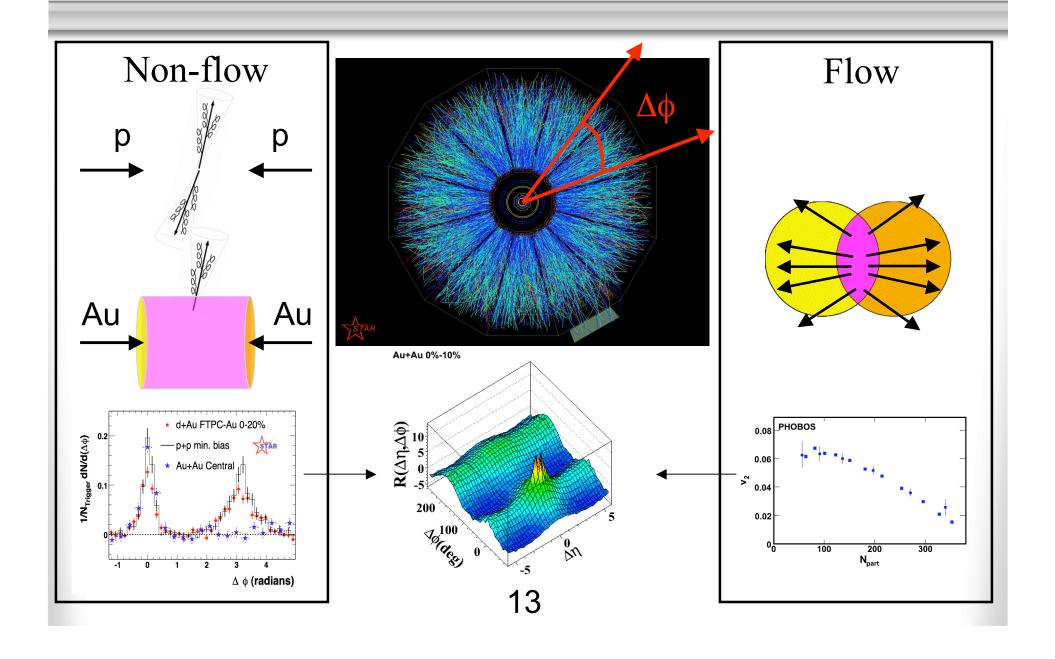
CGC: Drescher, Nara, PRC C76, 041903 (2007)

Two-particle correlations

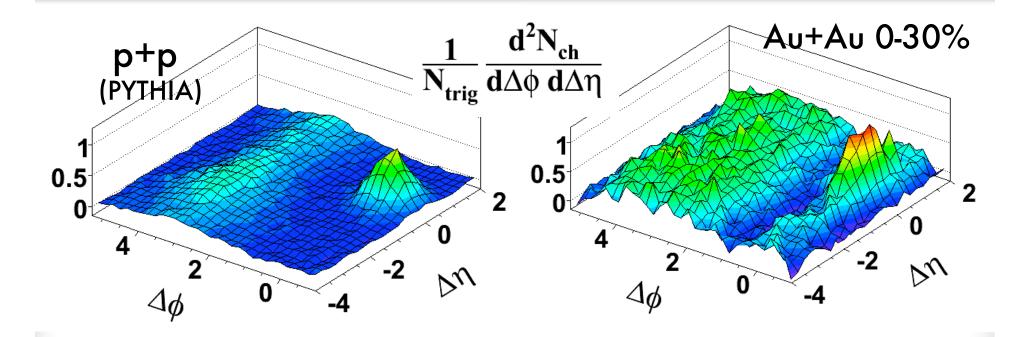




Two-particle correlations

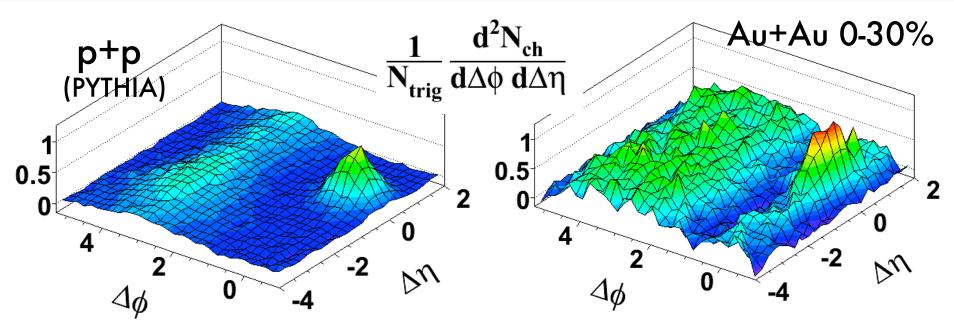


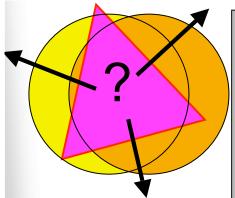
Ridge and Broad Away side



A large correlation structure at $\Delta \phi = 0^{\circ}$ and a broad away side at $\Delta \phi = 180^{\circ}$ is observed out to $\Delta \eta = 4$

High p_T triggered correlations





Collective Flow?

- Triangular anisotropy in initial geometry
- Description of data in terms of triangular flow
- Model description of triangular anisotropy

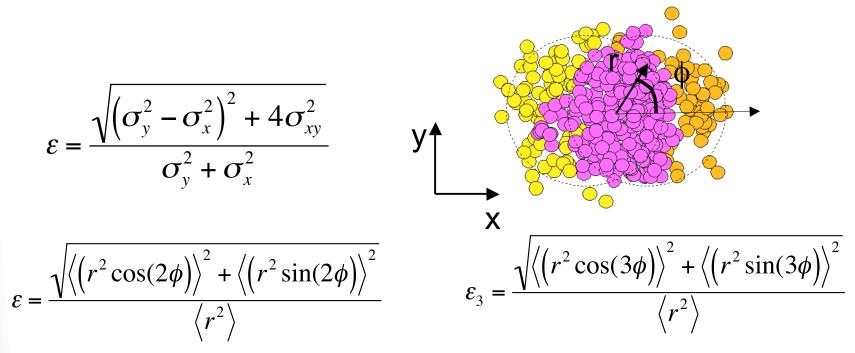
PHOBOS PRL 104, 06230 (2010)

Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.

$$\varepsilon = \frac{\sqrt{\left(\sigma_y^2 - \sigma_x^2\right)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}$$

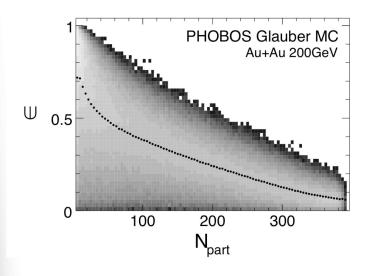
$$\varepsilon = \frac{\sqrt{\left\langle \left(r^2 \cos(2\phi)\right\rangle^2 + \left\langle \left(r^2 \sin(2\phi)\right\rangle^2\right)}}{\left\langle r^2 \right\rangle}$$



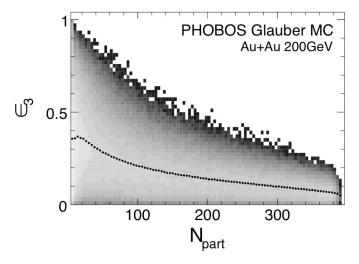
Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.

$$\varepsilon = \frac{\sqrt{\left\langle \left(r^2 \cos(2\phi)\right\rangle^2 + \left\langle \left(r^2 \sin(2\phi)\right\rangle^2\right)}}{\left\langle r^2 \right\rangle}$$



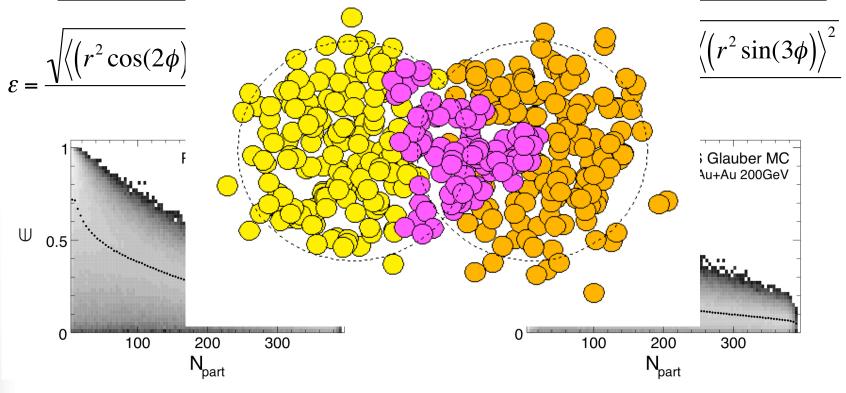
$$\varepsilon_3 = \frac{\sqrt{\left\langle \left(r^2 \cos(3\phi)\right\rangle^2 + \left\langle \left(r^2 \sin(3\phi)\right\rangle^2}\right)}}{\left\langle r^2 \right\rangle}$$



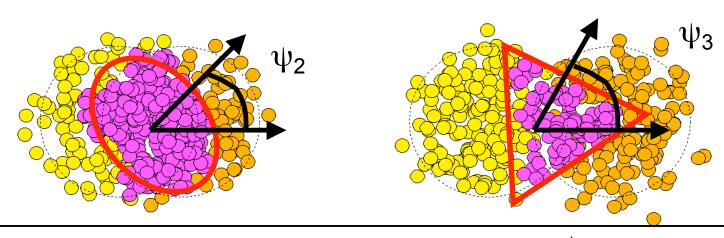
17

Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.



Triangular flow



$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_n)) \right) \qquad v_2 = \left\langle \cos(2(\phi - \psi_n)) \right\rangle$$

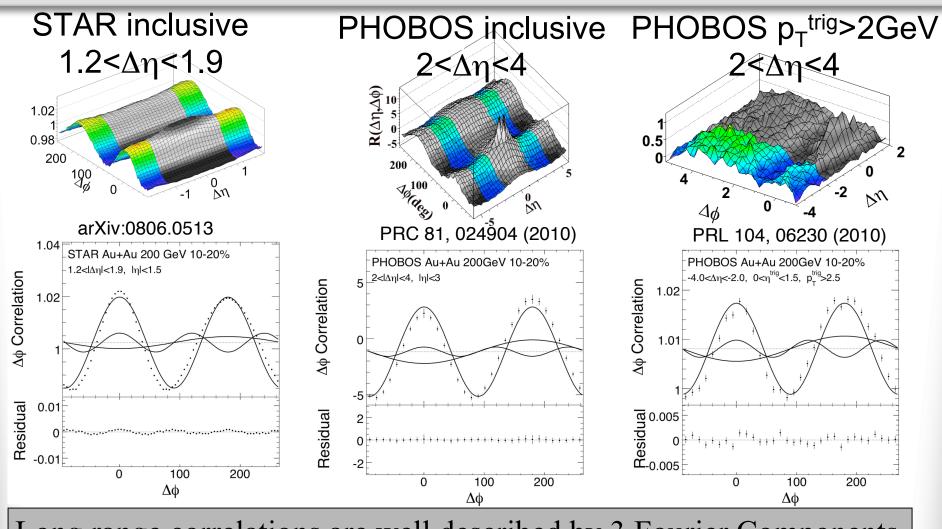
$$v_3 = 0$$

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_n)) \right)$$

$$v_2 = \left\langle \cos(2(\phi - \psi_2)) \right\rangle$$

$$v_3 = \left\langle \cos(3(\phi - \psi_3)) \right\rangle$$

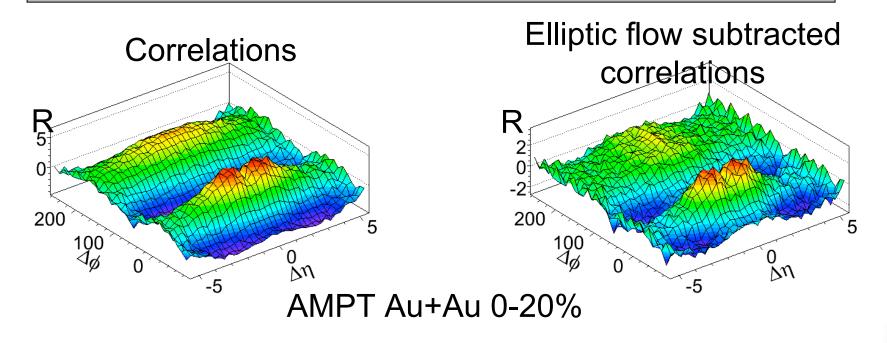
Correlations at large Δη



Long range correlations are well described by 3 Fourier Components.

AMPT Model

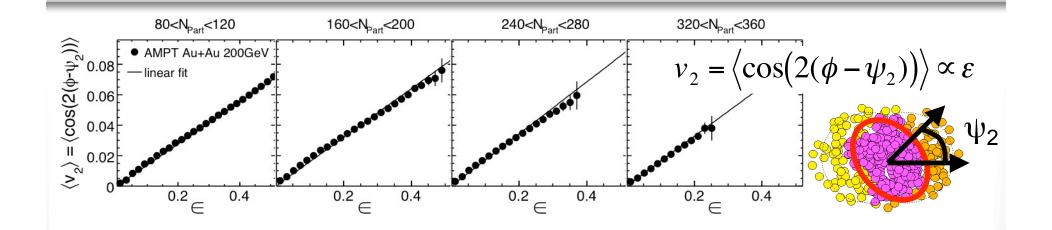
AMPT model: Glauber initial conditions, collective flow



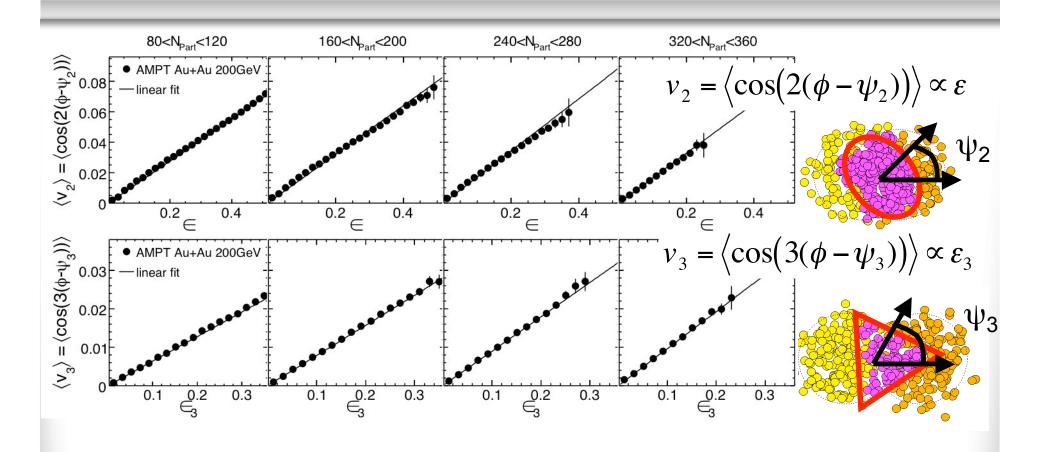
AMPT model also produces similar correlation structures that extend out to long range in $\Delta\eta$.

Lin et. al. PRC72, 064901 (2005) Ma et. Al. PLB641 362 (2006)

Elliptic flow in AMPT



Triangular flow in AMPT



Triangularity leads to triangular flow in AMPT.

Flow and correlations in AMPT

$$\frac{\mathrm{d}N}{\mathrm{d}\Delta\phi} = \frac{N}{2\pi} \left(1 + \sum_{n \leq 1} 2\mathbf{V}_{n\Delta} \cos(n\Delta\phi) \right) \qquad \mathbf{V}_{n\Delta}^{\text{flow}} \sim \int_{n} \mathbf{V}_{n}(\eta) \times \mathbf{V}_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$\mathbf{V}_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} \mathbf{V}_{n}(\eta) \times \mathbf{V}_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$\mathbf{V}_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} \mathbf{V}_{n}(\eta) \times \mathbf{V}_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$\mathbf{V}_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} \mathbf{V}_{n}(\eta) \times \mathbf{V}_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$\mathbf{V}_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} \mathbf{V}_{n}(\eta) \times \mathbf{V}_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$\mathbf{V}_{n\Delta}^{\text{flow}} \sim \int_{n\Delta} \mathbf{V}_{n}(\eta) \times \mathbf{V}_{n}(\eta + \Delta\eta) \, \mathrm{d}\eta$$

$$\mathbf{V}_{n\Delta}^{\text{flow}} = \left\langle \cos(3(\phi_{1} - \phi_{2})) \right\rangle$$

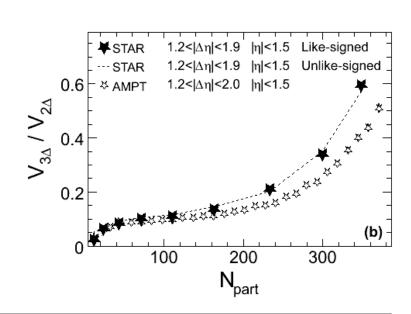
$$\mathbf{V}_{n\Delta}^{\text{flow}} = \left\langle \cos(3(\phi_{1} - \phi_{2})) \right\rangle \left\langle \cos(3(\phi_{2} - \phi_{3})) \right\rangle$$

Triangular flow in data

PHOBOS

PHOBOS -4 < $\Delta\eta$ <-2 0 < η^{trig} < 1.5 p_T^{trig} > 2.5 φ 0.6 — PHOBOS 2 < $|\Delta\eta|$ < 4 $|\eta|$ < 3 φ 0.4 — $|\Delta\eta|$ < 4 $|\eta|$ < 3 φ 0.4 — $|\Delta\eta|$ < 4 $|\eta|$ < 3 φ 0.4 — $|\Delta\eta|$ < 4 $|\eta|$ < 3 φ 0.7 — $|\Delta\eta|$ < 4 $|\eta|$ < 3 φ 0.7 — $|\Delta\eta|$ < 4 $|\eta|$ < 3 $|\eta|$ < 6 $|\eta|$ < 7 $|\eta|$ < 7 $|\eta|$ < 9 $|\eta|$ < 10 |

STAR



The ratio of triangular flow to elliptic flow qualitatively agree between data and AMPT.

STAR arXiv:0806.0513

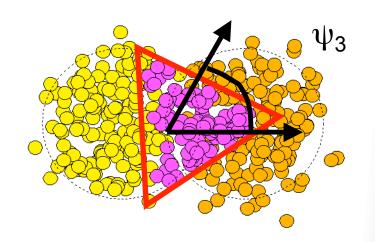
PHOBOS PRC 81, 024904 (2010)

PHOBOS PRL 104, 06230 (2010)

Summary

- Fluctuations in MC Glauber leads to finite "participant triangularity."
- In AMPT model, large triangular flow signal observed correlated with initial triangularity:

$$v_3 = \langle \cos(3(\phi - \psi_3)) \rangle \propto \varepsilon_3$$



- Ridge and broad away side in AMPT have dominant contribution from triangular flow.
- Fourier decomposition of long range azimuthal correlations in AMPT and data show qualitative agreement as a function of centrality and momentum.

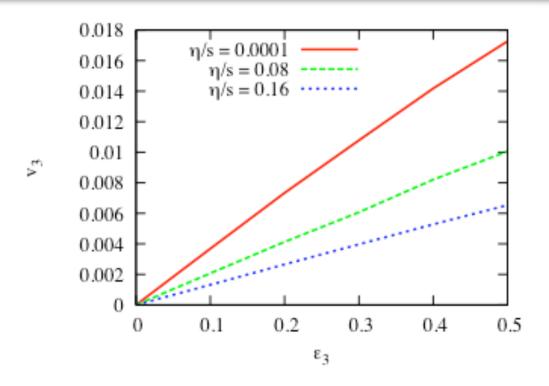
Conclusions

- Initial geometry fluctuations can explain the ridge and broad away side.
- The correct language to use for these structure is that of flow.

$$v_2 = \langle \cos(2(\phi - \psi_2)) \rangle \propto \varepsilon$$

$$v_3 = \langle \cos(3(\phi - \psi_3)) \rangle \propto \varepsilon_3$$

Future



Triangular flow is a new handle on the initial geometry and the hydrodynamic expansion of the medium.

Backups

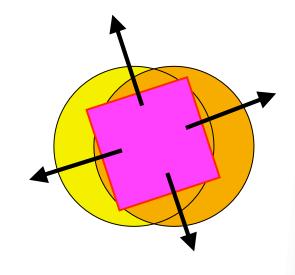
Future: V₄

Naïve generalization:

$$\varepsilon_4 = \frac{\sqrt{\langle \left(r^2 \cos(4\phi)\right)^2 + \langle \left(r^2 \sin(4\phi)\right)^2}}{\langle r^2 \rangle}$$

$$\psi_4 = \frac{\operatorname{atan2}(\langle r^2 \sin(4\phi_{\text{part}}) \rangle, \langle r^2 \cos(4\phi_{\text{part}}) \rangle) + \pi}{4}$$

$$v_4 = \langle \cos(4(\phi - \psi_4)) \rangle \propto \varepsilon_4$$



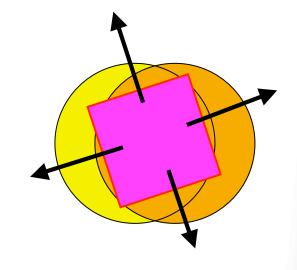
Future: V₄

Naïve generalization:

$$\varepsilon_4 = \frac{\sqrt{\left\langle \left(r^2 \cos(4\phi)\right\rangle^2 + \left\langle \left(r^2 \sin(4\phi)\right\rangle^2}\right\rangle}}{\left\langle r^2 \right\rangle}$$

$$\psi_4 = \frac{\operatorname{atan2}(\langle r^2 \sin(4\phi_{\text{part}}) \rangle, \langle r^2 \cos(4\phi_{\text{part}}) \rangle) + \pi}{4}$$

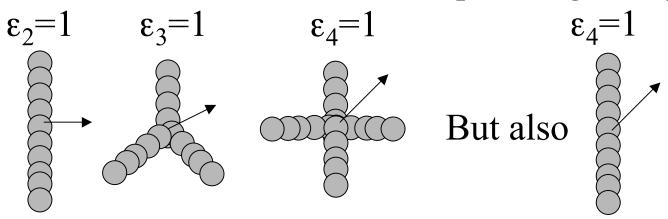
$$v_4 = \langle \cos(4(\phi - \psi_4)) \rangle \propto \varepsilon_4$$



Future: V₄

4 is not a prime number.

1. Need a better definition for "quadrangularity"

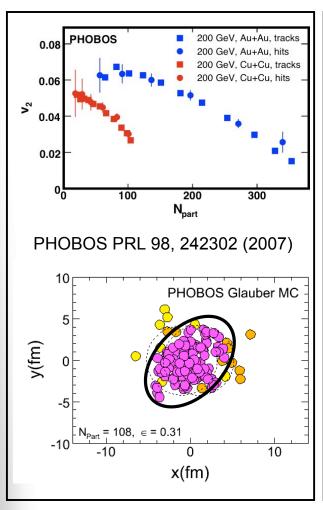


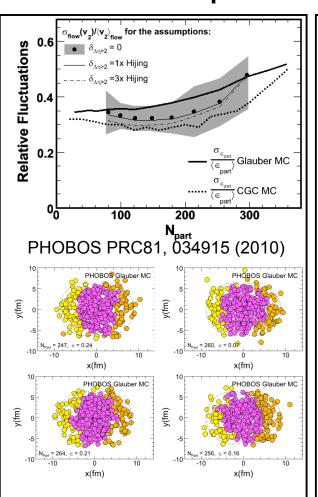
2. Eccentricity also leads to v_4 . (Ollitrault PLB642 227)

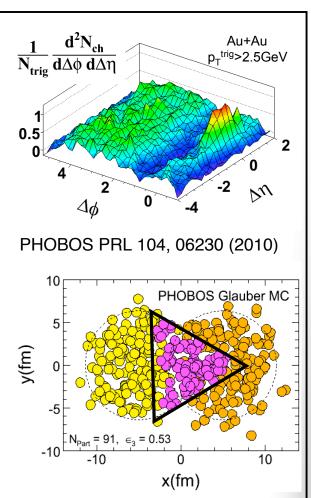
$$v_4(p_t) = \frac{(V_2 u_{\text{max}})^2}{2T^2} (p_t - m_t v_{\text{max}})^2 + \frac{V_4 u_{\text{max}}}{T} (p_t - m_t v_{\text{max}}).$$

Initial geometry fluctuations

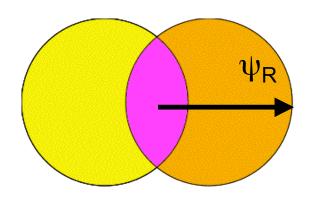
A consistent picture





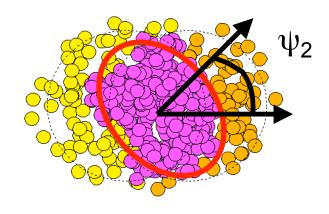


Two different pictures



$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_R)) \right)$$

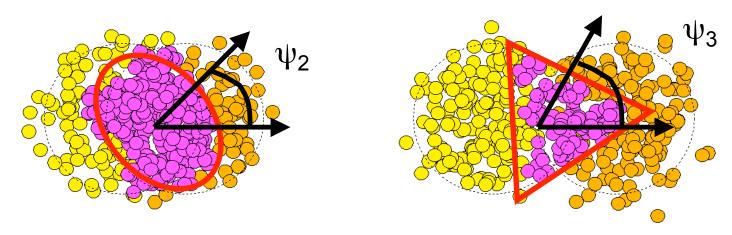
$$v_2 = \langle \cos(2(\phi - \psi_R)) \rangle$$



$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum_{n} 2v_n \cos(n(\phi - \psi_n)) \right)$$

$$v_2 = \langle \cos(2(\phi - \psi_2)) \rangle$$

Triangular flow



$$\psi_2 = \frac{\operatorname{atan2}(\langle r^2 \sin(2\phi_{\text{part}}) \rangle, \langle r^2 \cos(2\phi_{\text{part}}) \rangle) + \pi}{2}$$

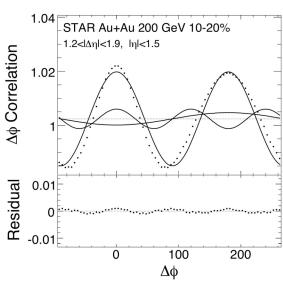
$$\psi_3 = \frac{\operatorname{atan2}(\langle r^2 \sin(3\phi_{\text{part}})\rangle, \langle r^2 \cos(3\phi_{\text{part}})\rangle) + \pi}{3}$$

Phases

$$\frac{dN}{d\phi} = \frac{N}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \psi_n)) \right)$$

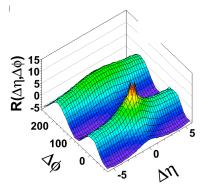
$$= \frac{N}{2\pi} \left(1 + \dots + 2v_2 \cos(2(\phi - \psi_2)) + 2v_3 \cos(3(\phi - \psi_3)) + \dots \right)$$

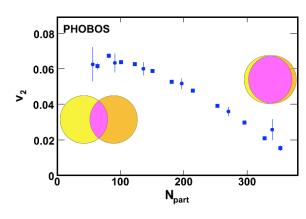
$$\frac{\mathrm{d}N^{\text{pairs}}}{\mathrm{d}\Delta\phi} = \frac{N^{\text{pairs}}}{2\pi} \left(1 + \dots + 2v_{2}^{2} \cos(2\Delta\phi) + 2v_{3}^{2} \cos(3\Delta\phi) + \dots\right)$$

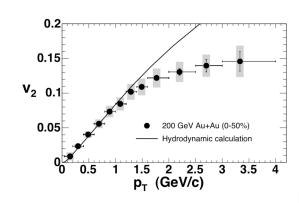


Second Fourier coefficient

- Why do we believe it is collective flow?
 - Large!
 - Present at large $\Delta \eta$: early times
 - Connection to initial geometry
 - i.e. centrality dependence
 - p_T dependence
 - Also $v_2\{4\}$, v_2 fluctuations and $v_2^2(\eta_1,\eta_2)$

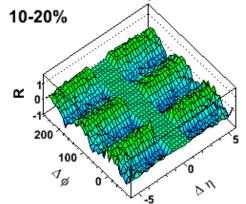


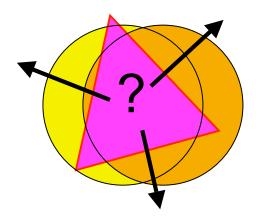




Third Fourier coefficient

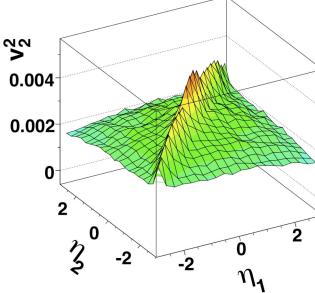
- Why should we believe it is collective flow?
 - Large!
 - Present at large $\Delta \eta$: early times
 - Connection to initial geometry
 - i.e. centrality dependence
 - p_T dependence
 - Also three particle correlations





A side note: flow vs. non-flow

$$v_2^2(\eta_1, \eta_2) = v_2(\eta_1) \times v_2(\eta_2) + \delta(\eta_1, \eta_2)$$
flow
flow
flow
non-flow



39 PHOBOS

A side note: flow vs. non-flow

$$v_2^2(\eta_1,\eta_2) = v_2(\eta_1) \times v_2(\eta_2) + \delta(\eta_1,\eta_2)$$
flow \oplus non-flow
$$v_2^{\text{flow}}(\eta_1) \times v_2^{\text{floy}}(\eta_2) \times v_2^{\text{floy}}(\eta_2)$$

$$v_2^{\text{flow}}(\eta_1) \times v_2^{\text{floy}}(\eta_2)$$

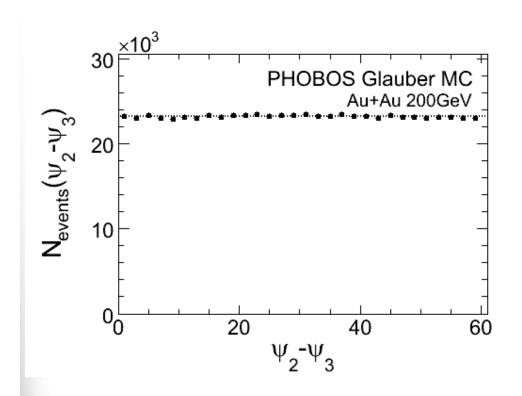
$$v_2^{\text{flow}}(\eta_1) \times v_2^{\text{floy}}(\eta_2)$$

$$v_2^{\text{floy}}(\eta_1) \times v_2^{\text{floy}}(\eta_2)$$

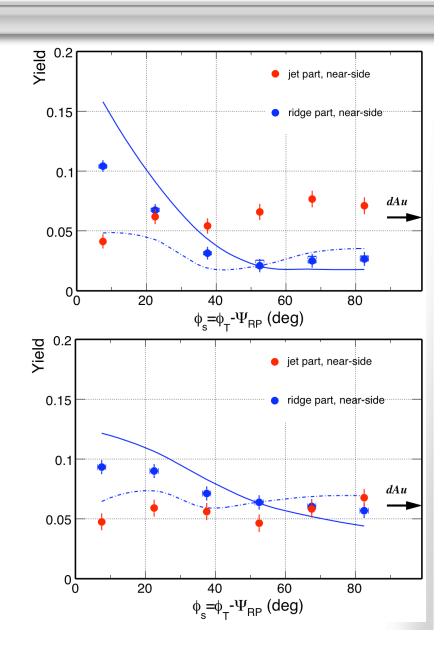
$$v_2^{\text{floy}}(\eta_2) \times$$

The best approach may be to assume non-flow to be negligible at long ranges.

Ridge vs. ψ_2

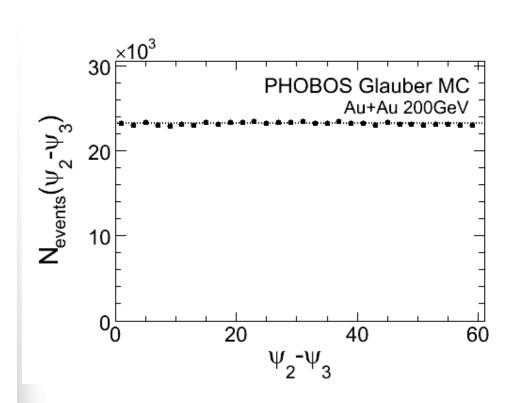


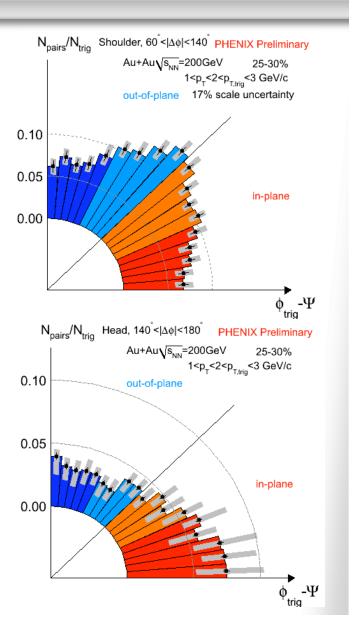
STAR Preliminary



Shoulder vs. ψ_2

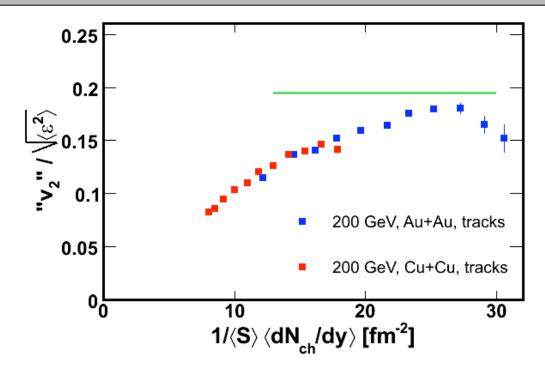
42



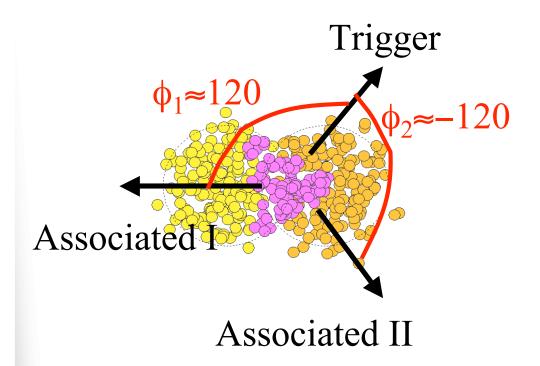


Implications for $\langle v_2 \rangle$

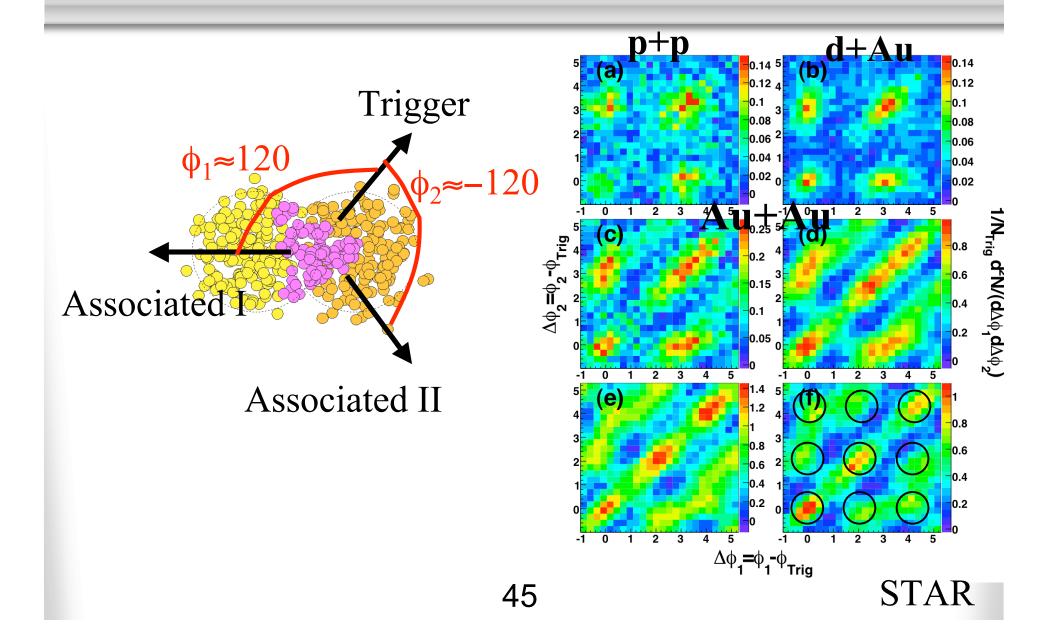
Conclusions for elliptic flow due to fluctuations: v_2 was over-estimated. ϵ was under-estimated.



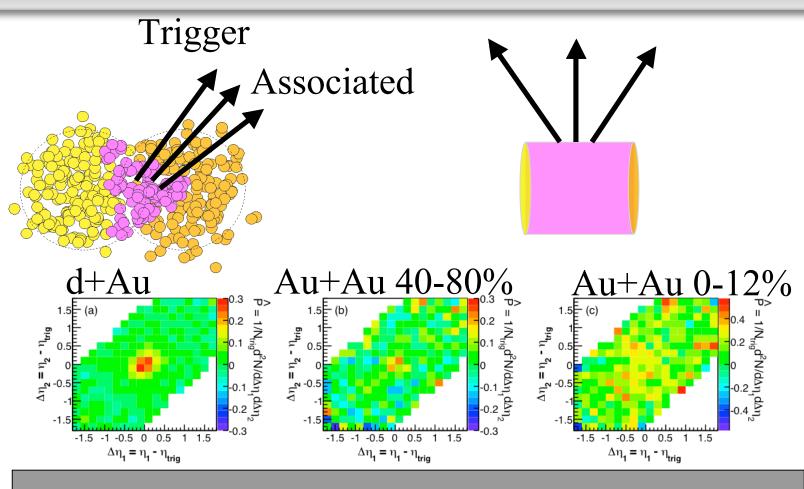
Three particle correlation I



Three particle correlation I



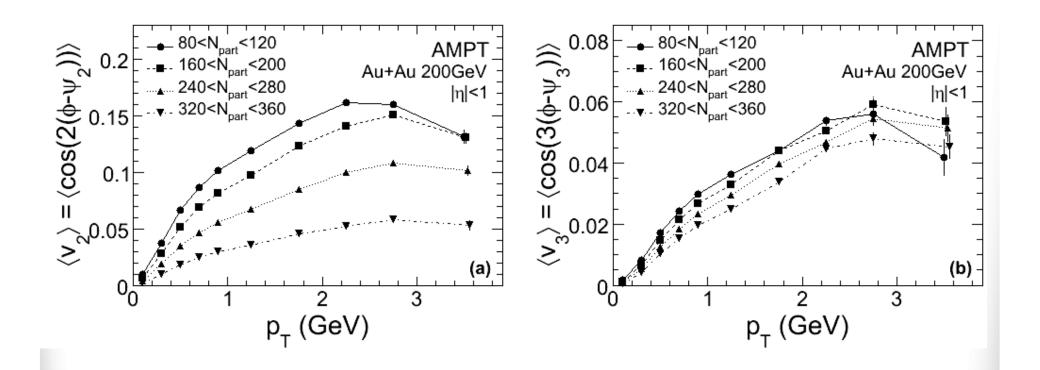
Three particle correlation II



No structure is observed consistent with triangular flow

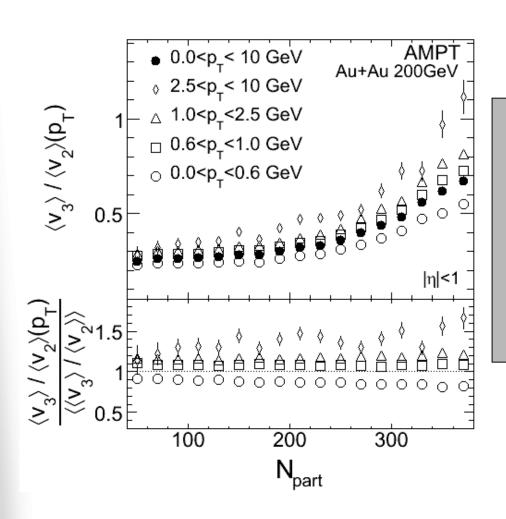
46 STAR

p_T dependence



 $v_2(p_T)$ and $v_3(p_T)$ show similar gross features in AMPT

p_T dependence

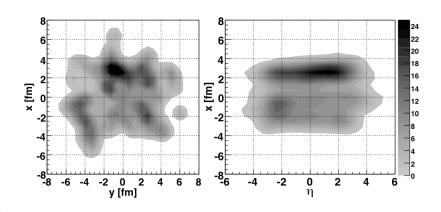


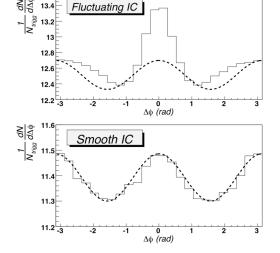
v₃/v₂ increases with centrality and p_T

This explains why the ridge was observed at high p_T correlations in central collisions

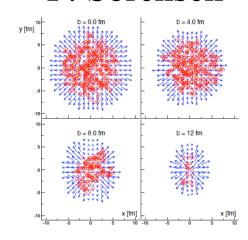
Initial geometry fluctuations

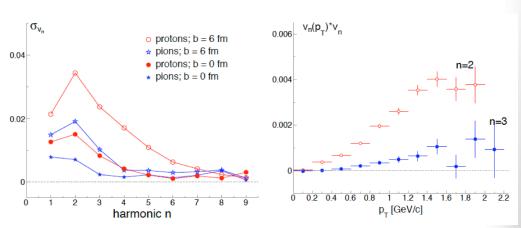
J. Takahashi et al.



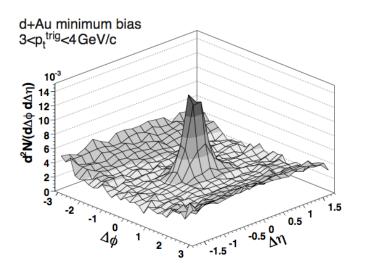


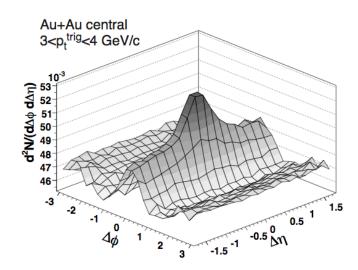
P. Sorensen



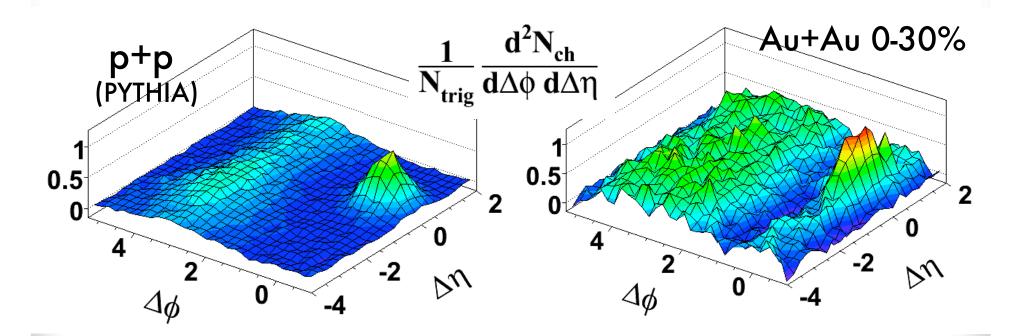


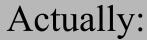
Two particle correlations with high p_T trigger, $\Delta \eta < 2$ A ridge and broad side observed in comparison to p+p.



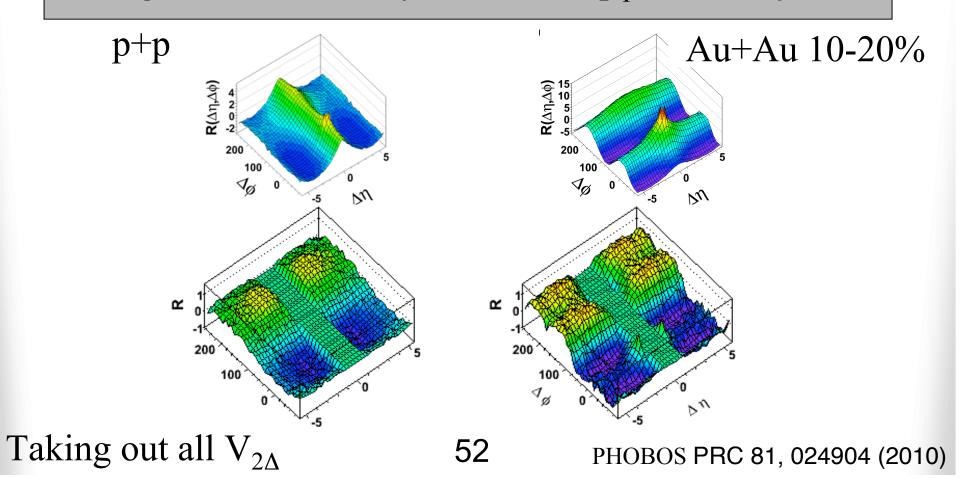


Also at $2 < \Delta \eta < 4$





Ridge and broad away side at low p_T out to $\Delta \eta = 5.5$



Actually:

Ridge and broad away side at low p_T out to $\Delta \eta = 5.5$

